1. 法人のお客様TOP
  2. 集合研修
  3. データサイエンス
  4. データサイエンスやAIの企業活用事例

データサイエンスやAIの企業活用事例

東京地下鉄株式会社様と産業能率大学の共同推進事例

東京地下鉄株式会社様




 東京地下鉄株式会社(東京メトロ)様は、大都市東京を支える交通インフラであり、一日に約724万人ものお客様が利用しています(2018年時点)。その大部分は地下トンネルで構成されており、将来にわたり利用者の安全と安心を確保しながら営業を続けるためには毎日の点検が重要です。

 「何を当たり前のことを」と思われるかもしれません。しかし、ここで重くのしかかってくるのが管理スパンの巨大さです。9路線195.1km。この全てがメンテナンスの対象で、徒歩と目視で検査を行っています。

地下トンネルの検査の様子(2009年時)
 これを毎日欠かさず行うことで、我々利用者の安全は守られているのです。そして、この検査で異常が見つかった箇所は、なんと1m単位で記録がなされています。しかも、2009年頃は、検査の記録は紙で行われ、それを表計算ソフトに入力してデータの管理がなされていました。いかに過酷で大変な作業であるかは想像に難くありません。これでは時間がかかる上、何より検査者の負担が大きいです。
 そこで、より安全で効率的なメンテナンスを目指して、東京メトロ様との共同研究が始まりました。具体的なデータ解析プロジェクトの流れは次のようになります。

東京メトロ様とのデータ解析プロジェクト

 目標設定と施策の展開は東京メトロ様の方で明確にしていただき、産業能率大学はデータを解析するための数理モデルの開発と分析(トンネルの健全性を判断するための指標θの算出)、それらを自動化するためのAIシステムの設計・開発を行いました。ただし、これらのことを一気に行ったわけではなく、まずは小規模データで数理モデルの開発(データ分析)を行い、その分析結果が適切に実務に活用できることが明らかになってから、その分析システムをAI化するという段階的なアプローチで実践していきました。
 このAIシステムを利用することで、検査者が直接タブレット端末からデータ入力を行えるようになり、データの蓄積に関する検査者の負担を著しく軽減することができるようになりました。またクラウド上に蓄積されたデータは、本社のクライアントPCから直接アクセスでき、メンテナンスに利用できる指標θの算出や分析結果の可視化などを、データ管理環境とスムーズに連携して行うこともできます。現在この仕組みは日常的に稼働しており、地下鉄利用者の安心・安全の確保と検査者のメンテナンス効率化を両立するための一助になっています。

地下トンネルの検査の様子(2018年時)

企業プロフィール


東京地下鉄株式会社(東京メトロ)
1994年4月1日設立
従業員数:9,574人(平成30年3月31日現在)
本社所在地:東京都台東区東上野三丁目19番6号
事業概要:
9路線中7路線で相互直通運転を実施しており、その直通区間は320キロにもなり首都圏の巨大な鉄道ネットワークを形成し、郊外から都心へのシームレスな輸送サービスを提供している。